Dave's Math Tables: Derivative x^n ![]() |
(Math | Calculus | Derivatives | Table Of | x^n) |
![]()
|
Proof of x^n
: from
e^(n ln x)
Given:
e^x = e^x;
ln(x) = 1/x; Chain Rule.
Solve:
x^n =
e^(n ln x)
=e^u
(n ln x) (Set u = n ln x)
= [e^(n ln x)] [n/x] = x^n n/x = n x^(n-1) Q.E.D.
Proof of x^n
: from the Integral
Given: x^n dx = x^(n+1)/(n+1) + c;
Fundamental Theorem of Calculus.
Solve:
x^(n-1) dx = x^n / n
x^n / n =
x^(n-1) dx = x^(n-1)
1/nx^n = x^(n-1)
x^n = n x^(n-1) Q.E.D.
Proof of x^n
: algebraicaly
Given: (a+b)^n = (n, 0) a^n b^0 + (n, 1) a^(n-1) b^1 + (n, 2)
a^(n-2) b^2 + .. + (n, n) a^0 b^n
Here (n,k) is the binary coefficient = n! / ( k! (n-k)! )
Solve:
x^n = lim(d->0) ((x+d)^n - x^n)/d
= lim [ x^n + (n, 1) x^(n-1) d + (n, 2) x^(n-2) d^2 + .. + x^0 d^n - x^n ] / d
= lim [ (n,1) x^(n-1) d + (n, 2) x^(n-2) d^2 + .. + x^0 d^n ] / d
= lim (n,1) x^(n-1) + (n, 2) x^(n-2) d + (n, 3) x^(n-3) d^2 + .. + x^0 d^n
= lim (n, 1) x^(n-1) (all terms on right cancel out because of the d factor)
= lim (n, 1) x^(n-1) = n! / ( 1! (n-1)! ) x^(n-1) = n x^(n-1) Q.E.D.